Skip to main content
Skip to footer
Home
Interview Questions
Machine Learning Basics
Deep Learning
Supervised Learning
Unsupervised Learning
Natural Language Processing
Statistics
Data Preparation
Jobs
Home
Interview Questions
Machine Learning Basics
Deep Learning
Supervised Learning
Unsupervised Learning
Natural Language Processing
Statistics
Data Preparation
Jobs
Login
Sign Up
Explore Questions by Topics
Computer Vision
(1)
–
Data Preparation
(35)
Feature Engineering
(30)
Sampling Techniques
(5)
–
Deep Learning
(52)
–
DL Architectures
(17)
Feedforward Network / MLP
(2)
Sequence models
(6)
Transformers
(9)
DL Basics
(16)
DL Training and Optimization
(17)
Generative AI
(2)
Machine Learning Basics
(18)
–
Natural Language Processing
(27)
NLP Data Preparation
(18)
Statistics
(34)
–
Supervised Learning
(115)
–
Classification
(70)
Classification Evaluations
(9)
Ensemble Learning
(24)
Logistic Regression
(10)
Other Classification Models
(9)
Support Vector Machine
(9)
–
Regression
(41)
Generalized Linear Models
(9)
Linear Regression
(26)
Regularization
(6)
–
Unsupervised Learning
(55)
–
Clustering
(37)
Clustering Evaluations
(6)
Distance Measures
(9)
Gaussian Mixture Models
(5)
Hierarchical Clustering
(3)
K-Means Clustering
(9)
Dimensionality Reduction
(9)
DL Training and Optimization
Q.
What is Parameter Efficient Fine-Tuning (PEFT)?
Q.
What is the “dead ReLU” problem and, why is it an issue in Neural Network training?
Q.
Why is Zero-centered output preferred for an activation function?
Q.
What is the vanishing and exploding gradient problem, and how are they typically addressed?
Q.
What do you mean by saturation in neural network training? Discuss the problems associated with saturation
Q.
What is an activation function? What are the different types of activation functions? Discuss their pros and cons
Q.
What are the key hyper-parameters of a neural network model?
Q.
Describe briefly the training process of a Neural Network model
Q.
What is Dropout?
Q.
What are some strategies to address Overfitting in Neural Networks?
Q.
What are some options for making Backpropagation more efficient?
Q.
What are some guidelines for choosing activation functions?
Q.
Discuss Softmax activation function
Q.
What is Rectified Linear Unit (ReLU) activation function? Discuss its advantages and disadvantages
Q.
Discuss TanH activation function
Q.
What is Sigmoid (logistic) activation function?
Q.
What is an activation function, and what are some of the most common choices for activation functions?
Partner Ad
Explore Questions by Topics
Computer Vision
(1)
–
Data Preparation
(35)
Feature Engineering
(30)
Sampling Techniques
(5)
–
Deep Learning
(52)
–
DL Architectures
(17)
Feedforward Network / MLP
(2)
Sequence models
(6)
Transformers
(9)
DL Basics
(16)
DL Training and Optimization
(17)
Generative AI
(2)
Machine Learning Basics
(18)
–
Natural Language Processing
(27)
NLP Data Preparation
(18)
Statistics
(34)
–
Supervised Learning
(115)
–
Classification
(70)
Classification Evaluations
(9)
Ensemble Learning
(24)
Logistic Regression
(10)
Other Classification Models
(9)
Support Vector Machine
(9)
–
Regression
(41)
Generalized Linear Models
(9)
Linear Regression
(26)
Regularization
(6)
–
Unsupervised Learning
(55)
–
Clustering
(37)
Clustering Evaluations
(6)
Distance Measures
(9)
Gaussian Mixture Models
(5)
Hierarchical Clustering
(3)
K-Means Clustering
(9)
Dimensionality Reduction
(9)
Search
Join us on:
Machine Learning Interview Preparation Group
@OfficialAIML
Find out all the ways that you can
Contribute
Other Questions in DL Training and Optimization
What is Within Cluster Sum of Squares (WCSS)?
What are some approaches for modeling non linear relationships?
What is Kernel PCA?
What problems would arise from using a regular linear regression to model a binary outcome?
What is the problem with using a generic list of stop words?
What is Classification?