Skip to main content
Skip to footer
Home
Interview Questions
Machine Learning Basics
Deep Learning
Supervised Learning
Unsupervised Learning
Natural Language Processing
Statistics
Data Preparation
Technical Quizzes
Jobs
Home
Interview Questions
Machine Learning Basics
Deep Learning
Supervised Learning
Unsupervised Learning
Natural Language Processing
Statistics
Data Preparation
Technical Quizzes
Jobs
Login
Sign Up
Explore Questions by Topics
Computer Vision
(1)
Generative AI
(2)
Machine Learning Basics
(18)
–
Deep Learning
(52)
DL Basics
(16)
–
DL Architectures
(17)
Feedforward Network / MLP
(2)
Sequence models
(6)
Transformers
(9)
DL Training and Optimization
(17)
–
Natural Language Processing
(27)
NLP Data Preparation
(18)
–
Supervised Learning
(115)
–
Regression
(41)
Linear Regression
(26)
Generalized Linear Models
(9)
Regularization
(6)
–
Classification
(70)
Logistic Regression
(10)
Support Vector Machine
(9)
Ensemble Learning
(24)
Other Classification Models
(9)
Classification Evaluations
(9)
–
Unsupervised Learning
(55)
–
Clustering
(37)
Distance Measures
(9)
K-Means Clustering
(9)
Hierarchical Clustering
(3)
Gaussian Mixture Models
(5)
Clustering Evaluations
(6)
Dimensionality Reduction
(9)
Statistics
(34)
–
Data Preparation
(35)
Feature Engineering
(30)
Sampling Techniques
(5)
Logistic Regression
Q.
What is Logistic Regression?
Q.
What are the assumptions of logistic regression?
Q.
What are the advantages and disadvantages of logistic regression?
Q.
What is the error / loss function in logistic regression?
Q.
How are the coefficients in a logistic expression interpreted?
Q.
What is the equivalent of the overall F test in logistic regression?
Q.
Why are coefficients estimated through Maximum Likelihood (MLE) instead of Least Squares?
Q.
What is the relationship between the log odds ratio and probability?
Q.
Why are the log odds used in the link function instead of just the regular odds ratio?
Q.
What problems would arise from using a regular linear regression to model a binary outcome?
Partner Ad
Explore Questions by Topics
Computer Vision
(1)
Generative AI
(2)
Machine Learning Basics
(18)
–
Deep Learning
(52)
DL Basics
(16)
–
DL Architectures
(17)
Feedforward Network / MLP
(2)
Sequence models
(6)
Transformers
(9)
DL Training and Optimization
(17)
–
Natural Language Processing
(27)
NLP Data Preparation
(18)
–
Supervised Learning
(115)
–
Regression
(41)
Linear Regression
(26)
Generalized Linear Models
(9)
Regularization
(6)
–
Classification
(70)
Logistic Regression
(10)
Support Vector Machine
(9)
Ensemble Learning
(24)
Other Classification Models
(9)
Classification Evaluations
(9)
–
Unsupervised Learning
(55)
–
Clustering
(37)
Distance Measures
(9)
K-Means Clustering
(9)
Hierarchical Clustering
(3)
Gaussian Mixture Models
(5)
Clustering Evaluations
(6)
Dimensionality Reduction
(9)
Statistics
(34)
–
Data Preparation
(35)
Feature Engineering
(30)
Sampling Techniques
(5)
Search
Join us on:
Machine Learning Interview Preparation Group
@OfficialAIML
Find out all the ways that you can
Contribute
Other Questions in Logistic Regression
What is Information Criteria (AIC, BIC)?
What are the advantages and disadvantages of a GBM model?
What is the difference between Adaboost and Gradient boost?
When to use Ridge Regression vs Lasso?
What is the difference between QDA and Gaussian Mixture Models (GMM)?
Suppose there are a large number of predictors ‘p’. What is the best approach to find out if any of the p predictors are helpful in predicting the response ‘y’?