What are the main components of a Bayesian Model?

Adapted from Bayes’ Rule, the basic setup of Bayesian inference is:

where is the posterior, or the distribution of the parameter updated after observing data X. is the likelihood of the observed data

is the prior distribution assigned to based on a subjective degree of beliefP(X) is the marginal distribution of X that normalizes the posterior into a valid probability distribution

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad
Find out all the ways that you can
Contribute
Here goes your text ... Select any part of your text to access the formatting toolbar.