What is Isolation Forest?

Isolation Forest works as an anomaly detection approach and is based on the Random Forest algorithm. It assigns an anomaly score between 0 and 1 to each observation, where values close to 1 indicate the points are more likely to be outliers, and values closer to 0 are unlikely to be anomalies. At a high level, the intuition of the algorithm is that in the construction of a decision tree, points that are outliers are more likely to be partitioned into nodes that are a shorter path from the root node, since a decision tree splits a variable in such a way that creates the most differentiation between the observations that fall into different nodes in a tree.

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad
Find out all the ways that you can
Contribute
Here goes your text ... Select any part of your text to access the formatting toolbar.